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This paper gives powerful necessary conditions for convergence of Lagrange
interpolation on an arbitrary system of nodes in Lp(d:) with d: belonging to the
Szego� 's class. This provides a partial answer to Problem XI of P. Tura� n [J. Approx.
Theory 29 (1980), 33�34]. It is shown that in this case the asymptotics of distribu-
tion of the nodes must behave like the power asymptotics. � 1996 Academic Press, Inc.

1. Introduction and Main Results

This paper deals with mean convergence of Lagrange interpolation on an
arbitrary system of nodes.

Denote by X a triangular matrix of nodes

1�x1n>x2n> } } } >xnn�&1, n=1, 2, ... . (1.1)

The Lagrange interpolating polynomial of f # C[&1, 1] on X is defined by

Ln (X, f ) :=Ln (X, f, x) := :
n

k=1

f (xkn) lkn (x), n=1, 2, ..., (1.2)

where

lkn (x) :=
|n (x)

(x&xkn) |$n (xkn)
, k=1, 2, ..., n, n=1, 2, ... (1.3)

with |n (x) :=|n (X, x) :=(x&x1n)(x&x2n) } } } (x&xnn), n=1, 2, ... . For
simplicity sometimes we also write xk instead of xkn , etc.

Dealing with mean convergence of Ln (X, f ) Tura� n proposed [10,
pp. 33�34]
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Problem XI. Given p>1, what is a necessary and sufficient condition
that

lim
n � � |

1

&1
| f (x)&Ln (X, f, x)| p dx=0 (1.4)

for every f # C[&1, 1]?

Let d:(x) be a finite Borel positive measure on the interval I :=[&1, 1],
whose support is an infinite set. Let

Pn (d:, x)=#n xn+ } } }

(#n :=#n (d:)>0), be the orthonormal polynomials with respect to d:. It is
natural to propose a more general

Problem. Let d: be a measure supported in [&1, 1]. Given p>0, what
is a necessary and sufficient condition that

lim
n � � |

1

&1
| f (x)&Ln (X, f, x)| p d:(x)=0 (1.5)

for every f # C[&1, 1]?

This is a difficult problem, only some necessary conditions for weighted
mean convergence of Lagrange interpolation on an arbitrary system of
nodes are obtained (see [6�8; 10, pp. 33�34] and the references therein).
In particular, in [8] it is shown that, if (1.5) holds for all f # C[&1, 1] for
a regular measure d:, which means limn � � #n (d:)1�n=2, then the
asymptotic behaviour of |n (X, x) behaves like the regular (nth root)
asymptotic behaviour of |n (d:, x)=Pn (d:, x)�#n (d:). In this paper we
intend to give powerful necessary conditions guaranteeing (1.5) for all
f # C[&1, 1] for d: # S (the Szego� 's class) [5, p. 246], which means

|
1

&1

ln :$(x) dx

- 1&x2
> &�. (1.6)

To state our results we need some definitions and notations. Write for
f # C[&1, 1] and 0<p<�

& f &d:, p :={|I
| f (x)| p d:(x)=

1�p

,

& f & :=max
x # I

| f (x)| ,

&Ln (X)&d:, p := sup
& f &�1

&Ln (X, f )&d:, p ,

17Lp CONVERGENCE OF LAGRANGE INTERPOLATION
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Sn (X, x) := :
n

k=1

|(x&xkn) lkn (x)| ,

#n (X) := :
n

k=1

1
||$n (xkn)|

,

,(z) :=z+- z2&1, z # C,

where C is the complex plane and the branch of the square root is taken
so that - z2&1 behaves like z near infinity.

The main result of this paper is the following

Theorem. Let d: be a measure supported in [&1, 1] and d: # S. Let
0<p<�. If (1.5) holds for every f # C[&1, 1], then

(a)
#n (X)

2n �const; (1.7)

(b) }Sn (X, z)
,(z)n }�const, z # 0 (1.8)

holds for every compact set 0 in C"I;

(c) 0<c1� } 2
n|n (X, z)

,(z)n }�c2 , z # 0 (1.9)

holds for every compact set 0 in C"I, where c1 and c2 are constants inde-
pendent of n;

(d) } :
n

k=1

f (xkn)&
n
? |

1

&1

f (x) dx

- 1&x2 }�const & f &2 , (1.10)

whenever f is analytic in an open set 2#I, here

& f &2=sup
z # 2

| f (z)|.

Remark 1. We point out that (b) � (a) 6 (c) (Lemma 6) and (c) � (d)
(Lemma 4).

Remark 2. As it is well known, for a measure d: # S the corresponding
orthogonal polynomials |n (d:, x)=Pn (d:, x)�#n (d:) must satisfy the con-
ditions (a)�(d) [5, Theorem 3.5, p. 246; 1, 2]. In particular, Statement (d)
is a representation of the asymptotic distribution of nodes [5, p. 249]. Thus
our theorem shows that under the assumptions of the theorem the
asymptotic behaviour of |n (X, x) behaves like the asymptotic behaviour of
|n (d:, x).

18 YING GUANG SHI
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In the next section some auxiliary lemmas are given. In the last section
we proceed the proof of the theorem.

2. Auxiliary Lemmas

Let d+(%) be a finite Borel positive measure on the interval [&?, ?],
whose support is an infinite set. Let [4, p. 204]

G(d+) :=exp { 1
4? |

?

&?
ln +$(%) d%= . (2.1)

If d+ # S, that is

|
?

&?
ln +$(%) d%>&�, (2.2)

then the Szego� 's function is defined by

D(z) :=D(d+, z) :=exp { 1
4? |

?

&?

1+ze&i%

1&ze&i% ln +$(%) d%= (2.3)

which is analytic in |z|<1 [5, p. 242]. For an arbitrary continuous func-
tion F(%) of period 2? we have [9, p. 269]

lim
r � 1&0 |

?

&?
F(%) |D(rei%)| 2 d%=|

?

&?
F(%) +$(%) d%. (2.4)

Put

dn :=dn (d+)

:=min
bk

1
2? |

?

&?
|zn+b1 zn&1+ } } } +bn&1 z+bn | p d+(%), z=ei%. (2.5)

If d+ # S, then [9, p. 376]

lim
n � �

dn (d+)=G(d+). (2.6)

Now we can state and prove the following crucial

Lemma 1. Let d+ be a measure supported in [&?, ?] and d+ # S. Let
0<p<�. If \n (z)=zn+a1 zn&1+ } } } +an&1 z+an has no zeros in |z|>1
and satisfies

|
?

&?
|\n (ei%)| p d+(%)�const, (2.7)

19Lp CONVERGENCE OF LAGRANGE INTERPOLATION
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then

}\n (z)
zn }�const, |z|�R>1. (2.8)

Proof. Following the line of the proof of Theorem 12.1.1 in [9, p. 295]
here we must consider the function

D(z) �n*(z) p�2&1=[D(0) d&1�2
n &1]+dn1 z+dn2 z2+ } } } (2.9)

where

�n (z)=d&1�p
n \n (z), �n*(z)=zn�� n (z&1). (2.10)

The remainder of the proof is an almost word for word repetition of the
proof of Theorem 12.1.1 in [9, p. 295], so we omit the details. K

As a consequence of Lemma 1 we state

Lemma 2. Let d: be a measure supported in [&1, 1] and d: # S. Let
0<p<�. If

|
1

&1
|2n|n (X, x)| p d:(x)�const, (2.11)

then

}2
n|n (X, z)

,(z)n }�const, z # 0, (2.12)

whenever 0/C"I is compact.

Proof. By introducing Qn (x) :=2n|n (X, x) and

x= 1
2(z+z&1) (2.13)

we get

Qn (x)= :
n

k=0

bn&k xk= :
n

k=0

2&kbn&k(z+z&1)k

=z&n :
2n

k=0

a2n&k zk :=z&n\2n (z). (2.14)

It is easy to check that

ak=a2n&k , k=0, 1, ..., n, a0=a2n=1 (2.15)

20 YING GUANG SHI
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and

|Qn (x)|=|\2n (z)| , z=ei%. (2.16)

Meanwhile we see that \2n (z){0 for |z|{1.
Now define the associated measure d+(%) on [&?, ?] by

+(%) :={:(cos %)&:(1),
:(1)&:(cos %),

% # [&?, 0],
% # [0, ?]

(2.17)

so that

d+(%)=|sin %| d:(cos %) (2.18)

and

|
?

&?
|\2n (ei%)| p d+(%)=|

?

&?
|Qn (cos %)| p |sin %| d:(cos %)

=2 |
1

&1
|Qn (x)| p d:(x). (2.19)

Applying Lemma 1, this, together with (2.11), yields

}\2n (z)
z2n }�const, |z|�R>1.

By virtue of (2.14) we have

}Qn (x)
zn }�const, |z|�R>1,

from which (2.12) follows at once. K

Lemma 3. Let d: be a measure supported in [&1, 1] and let d+ be
defined by (2.17). Assume that 0<p<� and

en :=en (d:) :=en (d:, p)

:=min
bk

1
? |

1

&1
|2nxn+b1 xn&1+ } } } +bn&1 x+bn| p d:(x). (2.20)

Then

en (d:)�d2n (d+)�G(d+). (2.21)

21Lp CONVERGENCE OF LAGRANGE INTERPOLATION
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Meanwhile

lim
n � �

en (d:)>0 (2.22)

if and only if d: # S.

Proof. By definition we have dn (d+)�dn+1(d+), which by (2.6) implies
d2n (d+)�G(d+). Meanwhile (2.19) yields en (d:)�d2n (d+).

Let us prove the last conclusion. If d: # S then (2.21) implies (2.22).
Conversely, let p�1 and let ,n (z)=zn+a1 zn&1+ } } } +an be a solution

of (2.5). Since +(&%)=+(%),

,n (z&1)=,� n (z)=zn+a� 1 zn&1+ } } } +a� n

is also a solution of (2.5). Thus �n (z)= 1
2 [,n (z)+,� n (z)] is a solution of

(2.5) and has real coefficients.
Let z=ei% and

�n (z)= :
n

k=0

bn&k zk= :
n

k=0

bn&k [cos k%+i sin k%], b0=1.

If Tk (x) denotes the k th Chebyshev polynomial of the first kind then

dn (d+)=
1

2? |
?

&1
|�n (ei%)| p d+(%)�

1
2? |

?

&? } :
n

k=0

bn&k cos k% }
p

d+(%)

=
1
? |

1

&1 } :
n

k=0

bn&kTk (x) }
p

d:(x)

=
1

?2 p |
1

&1
|2nxn+ } } } | p d:(x)�2&pen (d:).

Thus, for p�1, d: # S follows at once from (2.6), (2.22), and the above
inequality. Here we have used the fact: under the assumption (2.17), (1.6)
is equivalent to (2.2).

If p<1 then by Ho� lder's inequality we obtain en (d:, p)�const en (d:, 1).
This means limn � � en (d:, 1)>0 and hence d: # S. K

Developing and properly modifying the ideas in [1, 2] we can prove the
following lemma, which is of independent interest.

Lemma 4. Let X be given in (1.1). Then Statement (c) is equivalent to
Statement (d).

22 YING GUANG SHI
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Proof. (O) Let 2#I be an open set. Choose a closed curve 1 in 2
surrounding I so that dist(1, I)>0 and put 0=1. Then, for an arbitrary
sequence :(n) satisfying :(n) � 0 as n � �, it follows from (1.9) that

lim
n � �

:(n) 2n|n (z)
,(z)n =0

holds uniformly on 0. Thus by differentiation we conclude

lim
n � �

:(n) 2n|n (z)
,(z)n {|$n (z)

|n (z)
&

n

- z2&1==0

holds uniformly on 0. Since :(n) is arbitrary, by (1.9) we have

Rn (z) :=
|$n (z)
|n (z)

&
n

- z2&1
(2.23)

satisfies |Rn (z)|�const, z # 0. From (2.23) we obtain that for every f
analytic in 2

1
2?i |

1
f (z) {|$n (z)

|n (z)
&

n

- z2&1= dz=
1

2?i |
1

f (z) Rn (z) dz.

Applying the residue theorem one has

1
2?i |

1
f (z)

|$n (z)
|n (z)

dz= :
n

k=1

f (xkn).

Meanwhile

n
2?i |

1

f (z)

- z2&1
dz=

n
? |

1

&1

f (x)

- 1&x2
dx

and

} 1
2?i |

1
f (z) Rn (z) dz }�const & f &2 .

Then (1.10) follows at once.

(o) Let 0/C"I be an arbitrary compact set. Choose an open set 2
so that 2#I and dist(2, 0)>0, which is possible, since 0 is compact and
0 & I=,. Then f (x)=ln(z&x) with z # 0 is analytic in 2. For this func-
tion (1.10) gives

} ln |n (z)&
n
? |

1

&1

ln(z&x) dx

- 1&x2 }�const & f &2�c0 , z # 0, (2.24)

23Lp CONVERGENCE OF LAGRANGE INTERPOLATION
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Now we need the following relation

1
? |

1

&1

ln(z&x) dx

- 1&x2
=ln _1

2
,(z)& , z # C"I, (2.25)

which may be proved by the argument used in [3, Lemma 2.2]. It follows
from (2.24) and (2.25) that

} ln 2n|n (X, z)
,(z)n }�c0 , z # 0,

which gives (1.9) provided we put c1=e&c0 and c2=ec0. K

For an estimation of the lower bound of 2n|n (z)�,(z)n we have

Lemma 5. Let X be given in (1.1). Then

}Sn (X, z)
,(z)n }�c>0, z # 0 (2.26)

holds for every compact set 0 in C"I. Meanwhile, if (1.7) holds, then

}2
n|n (X, z)

,(z)n }�c1>0, z # 0 (2.27)

holds for every compact set 0 in C"I.
Here c and c1 are constants independent of n.

Proof. Using the Lagrange interpolation formula based on the nodes
x1 , ..., xn , the (n&1)th Chebyshev polynomial on the first kind Tn&1(z),
z # 0, can be expressed as

Tn&1(z)= :
n

k=1

Tn&1(xk) lk (z)= :
n

k=1

Tn&1(xk)
|n (z)

(z&xk) |$n (xk)
.

Then

|Tn&1(z)|�|Sn (z)| max
1�k�n

1
|z&xk|

�|Sn (z)| d(z), (2.28)

where d(z)=1�dist(z, I). Taking logarithms on both sides in (2.28) yields

ln |Tn&1(z)|�ln Sn (z)+ln d(z)�ln |Sn (z)|+c3 ,

or in another form,

} Sn (z)
Tn&1(z) }�c4>0, z # 0.

24 YING GUANG SHI



File: 640J 291810 . By:CV . Date:06:02:00 . Time:16:04 LOP8M. V8.0. Page 01:01
Codes: 2330 Signs: 1270 . Length: 45 pic 0 pts, 190 mm
01

From the formula [5, p. 239]

lim
n � �

Tn (z)
,(z)n=

1
2

, z # C"I, (2.29)

(2.26) follows at once.
Meanwhile, by definition we have

Sn (X, z)=#n (X) |n (X, z). (2.30)

Thus (2.27) is an immediate consequence of (2.26) and (1.7). K

Lemma 6. Statement (b) holds if and only if Statement (a) and State-
ment (c) hold.

Proof. By (2.30) Statements (a) and (c) imply Statement (b).
Conversely, by the same arguments as in Lemma 4 it follows from (1.8)

and (2.26) that Statement (d) holds. By Lemma 4 Statement (c) is true.
Furthermore, by (2.30) Statements (b) and (c) yield Statement (a). K

As the final step of preliminaries we state a basic lemma.

Lemma 7 [7]. Let d: be an arbitrary measure supported in [&1, 1]
and 0<p0�p��. Then for arbitrary system X of nodes

&Sn (X)&d:, p�c(p0) &Ln (X)&d:, p , n�1. (2.31)

3. Proof of the Theorem

If (1.5) holds for every f # C[&1, 1] then by the Banach theorem
&Ln (X)&d:, p�const. So by (2.31)

&Sn (X)&d:, p�const, (3.1)

or equivalently

#n (X) &|n (X)&d:, p�const. (3.2)

Since d: # S, by (2.21)

2n &|n (X)&d:, p�[?G(d+)]1�p>0 (3.3)

which by (3.2) implies Statement (a).
On the other hand, it is well known (cf. [7, (2.20)]) that for an arbitrary

system X of nodes #n (X)�2n&2 from which we conclude 2n &|n (X)&d:, p�
const. Then applying Lemmas 2 and 5 yields Statement (c).

25Lp CONVERGENCE OF LAGRANGE INTERPOLATION
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Statement (b) follows from Statements (a) and (c) by Lemma 6. Mean-
while, Statement (d) follows from Statement (c) by Lemma 4.
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